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A new scheme fkr coding the boundary of two-dimensional
Random points on the boundary are paired

’

for this coding. Using this scheme, an effective and effi-
cient correlation technique to match two-dimensional shapes

is developed.

!

]

i shapes is proposed

E

i This technique has a number of very desirable character-
istics. It is able to match shapes of arbitrary scale and

orientation. The given shape may have closed or open

~ boundary or even have portion of it obstructed from view.

: Matching can be performed at varying degrees of details,
giving this technique an added robustness against-geometric
distortiens. It also has the capability to discriminate

between different shapes.

)

. Computation time on the IBM 3033 computer is typically
10 CPU seconds to generate one correlation curve between two
shapes, each with a 500-point boundary curve. -~
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I. INTRODUCTION

This thesis investigates the following problem. Given
the outlines of two objects, determine whether there are any
regions where they have the same shape. It is implicit that
one of objects may be partially occluded so that only a

o

ﬁ: portion of it is available. Minimum restriction is placed on
s the class of objects to be matched. The objects may have
L

P AL LN

closed or open boundaries (e.g., images of coastlines), with

arbitrary scale and orientation. Furthermore, the matching

must be done in the presence of noise (i.e., geometric ,

o8 distortions). An example of the type of shapes that will ‘
be studied in this report is given in Figure 1.1.
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Figure 1.1 Two Shapes to be Matched ;
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The shape of an object contains a great deal of informa-
tion of the object. This is evident from our ability to

recognise or at least guess at objects from their shapes
alone. It is thus not surprising that the problem of shape
description and recognition 1is fundamental in computer
vision.

Shape is, unfortunately, a largely qualitative concept.
Although we possess intuitive ability for dealing with
shape, we lack a good quantitative description. Shape is
apparently implicit in our language, where the name of an
object itself éontains its shape structure. To appreciate
this, consider Figure 1.2 (adapted from Freeman [Ref. 1]).
Suppose one 1s required to convey this figure to a distant
friend, say over the telephone. How would one proceed? One
could possibly spend a long time -describing it in terms of
the 'two peaks', 'left gentle slope', 'right steep cliff’,
etc and yet at the end of it, still doubtful whether the
message is brought across. Consider the alternative descrip-
tion of ‘steep forehead, medium-sized nose, thin lips and a
prominent chin'! (This is of course not just restricted to
our perception of shape. We have the same difficulty with
some of the other sensory perceptions too. Thus we speak of
'lemony taste' and 'silky smoothness'.) The main problem in
programming a machine to deal with shape lies largely in the
need to 'explicitize' shape.

Researchers in this field have lamented that there is
little guidance from the traditional mathematics [Ref. 2: p.
229]. As pointed out by Blum [Ref. 3], geometry has its roots
in surveying and has developed closely along with the phys-
ical sciences. The general Cartesian view of geometry metri-
cizes a space and describes a curve in that metric in some
functional form. He observed that this constrained analysis

to shapes of simple functional form rather than geometric
structure.

11




Figure 1.2 A Sample Shape to be Described

There has been extensive research on the subject of
shape representation and recognition [Ref. 4]. Many ad hoc
techniques have been developed, so that a large assortment
of tools is now available for solving certain practical
problems. And, as noted by Rosenfeld in his review paper
[Ref. 5], the field has begun to develop a scientific basis.
Recent developments in representation structures in mathe-
matics have also allowed researchers to move away from the
traditional framework of vector space (using classical math-
ematical tools of analysis and linear space) to that of a
structural framework (using modern tools such as graphs and
grammars).

Applications of computer vision are wide and varied.
These include character recognition, fingerprint identifica-
tion, microscopy, radiology, robot vision, remote sensing
and navigation, to name a few. Many of the successful
application of shape recognition have been primarily two-
dimensional. The most general problem of recognition of a
partially occluded three-dimensional object of unknown
scale, orientation and aspect remains a research topic.

This thesis is confined to two-dimensional shapes. It
assumes that the outline of the object has been extracted

and pre-processed to smoothen out some of the noise. Early
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in this investigation, it was realised that our problem is
two-fold. There 1is the representation problem and the
matching problem (recognition and matching will be used
interchangeably throughout this report). The representation
problem is largely geometric in nature, whereas matching is
primarily an algorithmic problem. However, the means of
representation determines the complexity of the matching
algorithm, and more importantly, it places a limit on the
capability of the matching algorithm. Thus, a representa-
tion based on Fourier Descriptors, for example, would not be
able to handle the partial occlusion problem because of its
global nature.

The following chapter contains a survey of the various
techniques that have been developed for the analysis of
two-dimensional shapes. . Chapter Three summarizes the
initial findings of this investigation and introduces a new
representation and matching algorithm. This representation
scheme is both scale and orientation invariant. The
matching algorithm is similar to the Hough Transform, but it
has several distinct features that make it scale and orien-
tation invariant too. Chapter Four presents the final
results of this investigation - a new correlation technique
that is simple and robust. This technique is applied to a
number of test shapes and the results verify that it is
capable of recognising parts of a shape. The shape may be of
unknown scale and orientation. The ability to discriminate
two different shapes is also demonstrated. The weakness of
this techinque is also discussed. Finally, the last chapter
summarizes the key results obtained and offers suggestions
for future work.
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II. SURVEY

A. INTRODUCTION

The recognition of shape is a relatively old problem
that has been recently taken up by engineers and computer
scientists. Psychologists have 1long puzzled over the
ability of humans and animals to discriminate shapes. A
collection of very interesting papers on the early studies
on form perception and discovery can be found in Uhr
[Ref. 6]. The early experiments conducted had suggested that
the information in an object outline is concentrated at
those points having high curvature. This idea is in fact
the basis for several of the current techniques for shape
recognition [Ref. 7: p. 165]. .

This chapter contains a survey of the techniques devel-
oped for two-dimensional shape recognition. It 1is not
intended to be a complete survey, but rather to be indica-
tive of the variety of techniques that have been examined
and also to demonstrate the difficulties facing researchers
in this area.

For convenience, these techniques are grouped into three

categories, according to the matching scheme used. These
are

a. Template matching
b. Feature matching

c. Transform parameter matching

B. TEMPLATE MATCHING

Template matching is the oldest technique developed.
This is basically a two-dimensional cross-correlation
between the reference shape (the 'template') and the test
shape. One may visualize template matching by imagining the
template being shifted across the test shape to different

14
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offsets and determining the amount of overlap. In its basic
form, template matching is of limited use.

Many variants to this basic method have been proposed.
Most of these involve some sort of hierarchical template
! matching process. In this, sub-templates for parts of the

T TGS | T

i objects are first matched. One then looks for combination
. of partial matches in approximately the correct relative
: positions. The computation cost is obviously high. Also,

template matching breaks down when the two shapes to be

’ v vy e

matched are of different scales.
. The two-dimensional correlation can be converted to a :
one-dimensional correlation by coding the boundary in some
appropriate functional form. Possible coding schemes

A PL AL Ll

)

include radius-angle representation, orientation-arc length

Tepresentation, curvature-arc length representation.

or

Ty
-

The . radius-angle (or polar) representation requires a
reference origin. This is usually taken to be the object's

) EADIEN)

centroid. This representation is obviously scale-dependent.
The need for a reference origin also makes it unsuitable for
partially occluded objects and those with open boundaries.
Also the need for the representation to be single-valued

“»
»

Y

+ N

h further restricts the type of shapes that can be coded in
this manner.

The orientation-arc 1length representation codes the

’ angle made between a fixed axis and a tangent to the

boundary as a function of the arc length. This representa-

PIRLNNS

}

tion is scale invariant, but not orientation invariant.

» lf"

Straight horizontal lines in this representation correspond
to zero curvature (ie. straight lines in the boundary), and
) straight non-horizontal 1lines correspond to segments of AY
circle with the radii of curvature given by the slopes of .
the lines. (This allows the boundary to be easily segmented
into straight lines and circular arcs and is used sometimes "
in the initial processing for feature matching).
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The curvature-arc length representation codes the curva-
ture of the boundary as a function of arc length. This
representation is orientation invariant. Unfortunately it
is not scale independent. (A circle of radius r, for
example, has a curvature of 1l/r). Also, curvature is very
sensitive to noise. Curvature 1is, however, a popular
descriptor and this representation is often used to extract
the extremas (in curvature) for feature matching [Ref. 8].

A discrete version of the orientation-arc length repre-
sentation has also been used. Commonly called the chain
codes, this codes the boundary into short line segments that
lie on a fixed grids with a fixed set of orientation.
Although efficient in representation and cross-matching,
chain codes are rather sensitive to noise and have other

. shortcomings that made this representation unsuitable for

general shape matching. [Ref. 9]

None of the representation discussed above is simultane-
ously scale and orientation invariant. The problems in
obtaining a 'truly intrinsic' representation of the boundary
is further discussed in the next chapter.

C. FEATURE MATCHING

Another approach to shape matching is to construct a
structural model of the shape. This model describes the
spatial decomposition of a shape in terms of features or
shape primitives. There are no established guidelines for

choosing shape primitives; however it is desirable that
these primitives provide a compact description of the shape
and be easily extracted from the shape.

A reading throught the literature reveals a wide variety
of primitives that have been used. Most of these are based
(explicitly or implicitly) on curvature. These include
curvature maxima and minima, corners, protrusions, intru-
sion, linear segments, quadratic segments, circular arcs,
convex blobs, T-shaped parts, etc. (see for example
[Refs. 10,11])
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; These primitives are often further qualified by a set of ‘

attributes, e.g., large, sharp convex corner facing North. adl

{ Once the primitives are obtained, relationships between them 57
S are computed. Examples of these relationships are adja- K
" cency, collinearity, symmetry, etc. §
‘ The matching algorithm depends on the type of structural EX
» model. There are essentially two kinds of structural i
E models, the relational model and grammatical model [Ref. 12: ¥
y Pp. 426 to 434]. In relational model, the primitives appear Ry
as nodes in a tree or graph structure. Nodes are connected :

3 by their relationship. The matching algorithm typically "3
3 involves a search for correspondence nodes in the two rela- ?
tional structures to be matched. l

: Grammatical model makes use of formal language theory to &
describe how the primitive pieces of the shape are joined A

. together. A grammar consists of three types of entities: &
y terminal or primitive symbols, non-terminal symbols and ;

‘ production rules. A pgrammar can be used to construct £

strings of primitive symbols (called a sentence) by succes- N

sive application of the production rules. The set of all E:

’ sentences that can be generated using a given grammar is g
call the language of the grammar. Object recognition is =2

then a process of determining whether a sentence (which =

describe the object) belongs to a given language, by parsing ;%

it with respect to the grammar of the language. ;.

A major problem with the grammatical model is the Y

construction of a grammar that is comprehensive enough to -

, generate all the possible types of shapes of interest and &
i yet discriminatory enough to reject others. A number of {?
grammars have been developed over the years. A pgood )

description of these can be found in [Ref. 13: pp. 365 to 382]. ~

A common problem with these relational and grammatical .

models is the effect of noise. Noise complicates the §

process of computing the appropriate structures. This is y

17
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normally handled by preprocessing the shape boundary,
usually by some sort of piecewise linear fit (polygonal
approximation) [Ref. 14: p. 275]. Here one runs into the
problem of how to locate the breakpoints, ie. when should a
linear segment ends and a new segment begins [Ref. 2: p. 232].
A number of criteria have been proposed [Ref. 7: pp. 168 to
184]. Recently the use of piecewise polynomial (mainly
B-splines) has become popular. B-splines have a number of
computational and representation advantages. For example,
its 'local' characteristics and 'terse’' representation allow
programs to manipulate them easily [Ref. 2: p. 239]. As with
piecewise linear approximation, B-splines approximation is
also sensitive to the placement of breakpoints (knots).

It is evident that within the structural framework, one
gains a considerably greater representation freedom, but
loses the convenience of vector space and the analytical
tools there. The shape primitives and their relationships
tend to be more qualitative than quantitative in descrip-
tion. For example, a primitive like 'sharp corner' does not
carry numerical values of the degree of sharpness or the
extent of the corner. Without a quantitative description,
standard similarity measures such as least mean square
differences cannot be easily applied. This also implies
that the feature matching technique performs better in clas-
sifying shapes into their generic classes (those generated
by the particular grammar) than in distinguishing between
objects from the same class.

This approach is highly suited for scene understanding
application where a 'literal', ie. qualitative, description

of the scene can be built up and compared with another scene

[Ref. 5]. It is of 1limited use in applications such as
change detection, where detailed matching of specific bound-
aries 1is required. This technique will not be further
discussed in this report.
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4 D. TRANSFORM PARAMETER MATCHING

The above two classes of matching techniques operate on

the original two-dimensional spatial information. Another
approach is to transform the original data into a different
domain and to perform the matching in this new domain. This

Lo o

method is no doubt motivated by the success of the frequency
approach in electrical engineering analysis. It is thus not t?
surprising that the Fourier series representation of the '@
parameterized boundary is one of the oldest and most popular
transform technique. N

The boundary may be coded in any of the representation

r

e e e

schemes discussed in the earlier section. These representa-

tions are periodic, and can thus be expanded into a Fourier

\ series. A common feature of the Fourier Descriptors (as
these coefficients of the series are called) is that the
general shape is given rather well by a few of the low-order
terms (important for data compression applications).
Properly parametrized, the coefficients can be made indepen-
dent of scale and orientation [Ref. 2: p. 238].

\' .

AR
»

C e

However this description is global in nature, ie. each
coefficient depends on every points on the boundary. It is
therefore not suitable for matching partially occluded
objects. Also, the Fourier descriptors can distinguish
among symmetrical curves only on the basis of the phase of
the descriptors. This, unfortunately, cannot be reliably
computed in many cases. Thus, the descriptors df the
contours of '2' and 'S5' are virtually identical [Ref. 4].

In contrast to the Fourier descriptors which describe
the boundary, another transform technique, the method of 1
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; moments, describes the shape interior points. In this tech- ’u
nique, coordinates of points belonging to the shape are used
to compute a set of moments. These moments can be normal-

NP

ised to obtain measures that are invariant under scaling and
rotation [Ref. 13: p. 354]. It is difficult to relate higher

R
PR ie)
e v~




moments to the shape, and furthermore, this is also a global
transform; thus it is not suitable for partially hidden
objects too.

A new transform technique appeared in the literature
recently [Ref. 15]. It treats a shape outline as a set of
discrete data that is generated by an autoregressive model.
An autoregressive model is a parametric equation that
expresses each sample of an ordered set of data samples as a
linear combination of a specified number of previous samples
from the set plus an error term. This model is widely used
in speech modelling and spectral estimation. The shape is
then described by the model parameters.

However, unlike conventional digital signal processing
where the sample interval is determined physically (and
uniquely) by an external reference (namely time), the
samples obtained form a shape boundary is determined by the
scale factor of the image of the object. It can be made
scale independent if the samples are taken at fixed angular
interval from, say, the centroid of the shape. The centroid
is, however, a global feature, which then makes this scheme
unsuitable for partially occluded objects.

Another interesting transform technique makes use of
geometric transformation to map instances of a given shape
pattern into peaks of a transform space. This so-called
Hough Transform was originally developed to handle simple
shapes such as straight 1lines and circles, but it was
recently extended to arbitrary shapes [Ref. 16]. We will
describe this technique in some details as it will be the
basis for a new matching algorithm to be developed in the
next chapter. The description below is adapted from Ballard
[Ref. 2: p. 128].

Consider an object with known scale and orientation.
Pick a3 reference point (xc,yc) in the silhouette (see Figure

2.1). At each boundary point (xi,yi), compute the gradient

20

...........................
....................

-t e " .
- - et
.....

"] -s".'{. RSN

-‘1‘( _t

R4

sssss



direction (p;) and the vector r. The magnitude of this
vector is the length of the line joining the reference point
to the boundary point and the direction is given by the
angle between this line and the x-axis (q). Store r as a
function of P4 This representation is multivalued, and in
general an index @i may have many values of r. The set of
all such vectors indexed by 04 forms what is called the
R-table. Table 1 shows the form of the R-table.

Figure 2.1 Hough Transform

The R-table is used to detect instances of a shape as
follows. First, an accumulator array of possible locations
of the reference point A(xc,yc) is initialised to zero. For
each boundary point of the test shape, compute its gradient
angle (¢;). For each vector indexed by this angle in the
R-table, compute the possible centers of the reference
point. That is, for each table entry of @i, compute

Xe = X3 * r(pj)*cos[ale;)]
Ye = ¥ * rlpi)*sinfa(e;)]
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Next,

location, ie.,

increment the accumulator array corresponding to this

Alxg,¥e) = A(xg,ye) * 1

The peaks in the accumulator array then correspond to
possible instances of the shape.

TABLE 1
R-TABLE

Angle Measured from Boundary Set of Vecsors
to Reference Point r= (r,a

?1 M1 M2/ --+ M
- ()] I‘21, l‘zz, e l'zp

Pm "m1* 'm2s - Tmq

This technique can be summarised as follows. For the
reference shape, code the boundary with respect to a fixed
reference point. For the test shape, use this coding to
reconstruct the »ossible locations of the reference point.
A cluster of possible locations would be obtained. If the
two shapes are identical, there would be a peak at the loca-
tion of the original reference point.

In this form, the Hough Transform has several limita-
tions. It requires the reference and test objects to be of
the same scale and orientation. Computational complexity
increases rapidly if it is necessary to deal with variations

in scale and orientation. Thus, to account for orientation,

.......................................
....................................................

-----------------------
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the above procedures must be repeated'for every orientation 3

to be distinguished. If it is required to distinguish X

orientation, say, 10 degrees apart, the procedures must be 3

, repeated 36 times, resulting in 36 accumulator arrays. The ?
, best match would then be identified by the accumulator with b
the largest value in all of the 36 arrays. Similarly with o

scale variations. A more serious objection is that the py

transform suffers from false peaks in the accumulator array ;
. due to random matches. Zf
, In the next chapter, it will be shown how with a =
different boundary representation scheme, this method can be -y

A modified to make it scale and orientation invariant. E
) Chapter Four presents an improved version that also tends to f
: decorrelate these random matches. IS
E. CONCLUSION .

There exists a wide variety of techniques for shape -
representation and matching. However, each technique has %

its limitations and is restricted to its specific domain of

shapes. The question naturally arises. 1Is there a schem- ﬁ
of representation and matching that is simultaneously scale ;;

and orientation invariant and also capable of handling ;

partially occluded objects? We address this question in the -

next chapter. f

. .
4 '_

<
R

23

'- .I
5.

& P

5

-
«
]
.




.............

III. PRELIMINARY FINDINGS

A. |IDEAL SHAPE REPRESENTATION

The manner in which the shape boundary is represented
determines to a large extent the capability and complexity
of the matching algorithm. If the representation makes use
of global information, then partial matching would not be
possible. If the representation is not orientation invar-
iant, then the matching algorithm would have to be repeated
across the range of possible orientations.

We can formulate a number of desirable characteristics
that the ideal shape representation might possess (see also
[Ref. 17]). These are:

a. It should be local. By this we mean (i) the coding of
each point on the boundary is determined bK a short
section of the boundary, rather than by the entire
boundary, and (ii) the coding is not dependent on an
externa reference, such as a centroid.

b. It should be independent of the orientation and scale
of the shape.

c. It should be bounded. 1In other words, a small_ change
to part of the boundary _ should create a small local
change in the representation.

d. It should allow for efficient and robust matching in
the presence of noise (geometric distortion).

e. It should uniquely specified a single boundary (up to
ghe fqu1va1ence classes induced by scaling and rota-
ion).
f. It should_ contain _information about the boundarz at
varying levels of detail, so that the matchi

n
process could be performed at different levels o%
coarseness.

g. It should be easily computable efficiently.

These characteristics are ideal, and it is by no means
obvious from the outset, that a representation with such
characteristics could be found. Later in this chapter we
shall describe one scheme of representation and matching

that comes close to satisfying these characteristics.
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B. DIFFICULTIES IN REPRESENTATION

For a representation to be scale and orientation invar-
iant, it is necessary that it be local. Unfortunately, this
is not a sufficient condition. It is necessary because if
an external reference is used this must be related to the
boundary, either in distance or direction. This immediately
ties the representation to a fixed scale or orientation.
That it is not sufficient can be seen from the fact that the
curvature-arc length representation is local in nature, and
yet is scale dependent. It is not obvious what the suffi-
cient condition(s) is(are). Rather than look for these, the
author concentrated on finding local representation that is
both scale and rotation invariant.

In a local representation, each point is influenced by a
small section of the boundary. The question immediately
arises. - How to determine this section? It is obvious that
the 'extent' of this section must be determined on a 'local'
basis too. This 'extent' cannot be determined by factors
such as 'length' or 'number of points' without making it
scale dependent.

The difficulties with shape representation can be traced
to the basic fact that one cannot associate an absolute
external reference with shape, as one could associate, say
time, with radar signals. Shape is a spatial variation, and
the spatial coordinates are, unfortunately, relative in
nature. Radar signals, on other hand, is a temporal varia-
tion, and for all practical purposes, time is an absolute
coordinate; there is no ambiguity regarding the interval of

time and the 'direction’' of time.

C. DIFFICULTIES IN MATCHING

The primary problem with matching is our lack of knowl-
edge on how to deal with geometric distortion (noise).
Almost all forms of shape representation (boundary and

structural codings) are sensitive to geometric distortions.
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As mentioned before, most researchers use some form of
hierarchial schemes in the matching process. We could, for
example, first find matches to small pieces (the smaller the
pieces, the less the effect of distortion), then look for
consistent combination of these matches. Alternatively, we
could first find matches at low resolution (rough details)
and then search for higher resolution matches in the
vicinity of the lower resolution matches. These hierar-
chial schemes increase the matching complexity (more so if
the representation is not scale and rotation invariant) and
the computation cost.

In contrast, conventional signal processing makes exten-
sive use of the statistical properties of the signal and
noise in order to extract the signal. 1In shape recognition,
we have very 1little understanding of the properties of
geometric distortion (noise) and how this could be filtered
out. There is little or no work done in this area. (It
should be added that it is also not obvious how this
problem should be attacked). Most researchers concentrated
on specific matching algorithm, using for the most parts,
ad-hoc methods.

A second, more mundane, problem is concerned with corre-
lation matching. Any representation that wuses the arc
length as one of the coordinate has to content with the fact
that both scale changes and geometric distortions (noise)
affect the length of arc traversed during the coding. Thus
even though the representation may be scale invariant, (in
that the particular characteristics at each boundary point
that is been coded does not vary with scale changes), the
unknown factor in the arc length axis makes matching using
correlation difficult. If the shapes to be matched are
complete, then the scale factor could be possibly removed by
normalizing with respect to the boundary length.
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dne simple algorithm to correlate scale and orientation
invariant representations at different scaling in the arc
length axis was devised. This algorithm basically builds up
a diagram of correspondence points of the two curves to be
matched. The algorithm is described below.

Algorithm 1: Correlation Matching

a. Set up an array, A(i,j) of dimension M by N where M,N
are the number of points of curve 1 (denoted by £f(n))
and curve 2 (denoted by g(n)). Initialize the array
to zeros.

For each point of f(n), search through the points of
g(n) for those points that match (to within a specif-
ied tolerance). Change the corresponding array entry
to 1, ie.,

A(i,3) = 1 if f£(i) ='g(d)

If the array values are plotted (point for 'l', blank

for '0'), a scatter diagram would result. Linear seg-

ments in this diagram correspond to matched segments
of the two curves. The slopes and intercepts of these
linear segments give the relative scale and orientat-
ion of the matched segments of the two boundaries.

An illustration of this can be seen in Figures 3.1, 3.2,
3.3. Figure 3.1 shows the hypothetical boundary representa-
tion of two shapes to be matched. It is assumed that these
shapes have been coded in a representation scheme that is
scale and orientation invariant. The two shapes differ in
scale (as can be seen in their arc lengths) and orientation
(as evident in the cyclical shift). There is also some
distortion over a section of the boundary (points 1 to 60 in
g(n)). Figure 3.2 shows the 'scatter diagram' or correspon-
dence chart. This is a very busy chart. (It is interesting
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to note that linear segments having negative slopes also
correspond to matched sections too; if both boundaries are
traversed in the same direction, these matches are not mean-
ingful, unless one of the object happens to be 'reflected' -
mirror image). This chart can be 'cleaned up' to filter out
all but those points lying along the longest linear segment
(with positive slope). This is shown in Figure 3.3. This
figure shows that the segment from point 1 to about 120 of
curve £(n) matches the segment corresponding to point 60 to
150 of curve g(n). It indicates that there is a poorer
match over the remaining segments. It also shows that the
scale difference is 120/90, or 1.333, and that the two
curves are displaced by about 60 points with respect to each
other.

The above algorithm basically performs an efficient
correlation over a wide range of scale. The success of the
algorithm depends largely on the sophistication of the
'straight line finder' routine.

In contrast to the correlation approach, the Hough
Transform matching technique is not affected by arc length
variation (in the sense that arc length does not enter into
its computation). This is because the Hough Transform does
not make use of the ordered sequence information of the
boundary points. This makes the Hough Transform sensitive
to false peaks (random matches of unrelated points), but is
also the reason why this technique is so much simpler.
Correlation technique matches points of an ordered sequence
of one curve against corresponding points of an ordered
sequence of another curve. It is this need to keep the
points ordered here that increases the computation burden in
this technique.

D. SCALE AND ORIENTATION INVARIANT REPRESENTATION
It was obvious from the beginning that 'angle informa-

tion' is scale and orientation invariant. The angle between
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two straight lines remains unchanged regardless of the scale

and rotation. It also became obvious, after searching for a
while, that the arc length to chord length ratio between two
points on the boundary (called the ACR henceforth for
convenience) is also scale and orientation invariant.

This suggests the following form of representation.
Code each boundary point in terms of the angle made by the
tangent to this point and a specific chord. This specific
chord is the chord connecting the boundary point to the
nearest boundary point (in a specific direction of trav-
ersal) with the property that the ACR between these points
is equaled to a pre-determined value. We shall call this the
B - s representation. Figure 3.4 illustrates this. The
curve is not closed to emphasis the fact that this coding
scheme applies to both open and closed figures.

Implementation of the B - s representation (for ACR 1.05
and 1.3) on shapes R35-52, R34-31p and R34-102 are given in
Figures 3.5 and 3.6. Outlines of these shapes can be found
in Figures 4.21 and 4.5. (For details of how these shapes
are generated and the meaning behind their names, see the
appendix. In Figure 3.5, the two curves have been properly
scaled so that the difference in arc lengths between them
are removed. This allows for easy comparision. Figure 3.6
has not been so scaled; the change in the arc length due to
the noise is very evident here.

It can be seen that the representation is virtually
identical over identical portion of the original shapes.
The partial match between R35-52 and R34-31p is evident.
Figure 3.6 shows the effect of noise on this representation.
It can be seen that small perturbation in the boundary curve
can cause disproportionately large changes in the represen-
tation. This effect is localised to the neighbouring region
only. Although not shown, it is obvious that this represen-
tation is independent of orientation.

32

LI
A

AL Y




!
E
|

f.‘:{;{‘;ﬂt‘-‘;ﬁifl::f;it'n':\.:'n‘-’-':'-"'-‘:'n.‘.‘\‘.'-'.}:.": e mal A

ACR = L/L

Figure 3.4 Arc to Chord Length Ratio Illustration

The ACR specification is a free parameter that can be
adjusted. The larger the ACR, the larger will be the
average distance between those points satisfying this ratio,
ie the less 'local' the representation becomes. Also objects
with relatively smooth boundaries would conceivably require
a smaller ACR specification. The choice of an 'optimum' ACR
may be very shape-dependent.

We note that the ACR specification is basically used to
define the 'extent' of the small section of the boundary
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discussed previously. This specification is both 'local' as
well as scale and orientation invariant. This is by no means
the only specification available. We can develop a whole
family of them. Figure 3.7 illustrates two other possible

specifications. One uses the area to chord length squared
ratio and the other uses the ratio between the length formed
by the two tangents and the chord.

Figure 3.7 Two Other Possible Specifications Besides ACR

The sensitivity of this ACR specification is due to the

unfortunate fact that geometric distortion affects the arc
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length directly. Two points that originally satisfy the ACR
specification in the coding phase may fail to do so in the
matching phase if the segment of the boundary joining them
is distorted. A small perturbation in the boundary can lead
to a large change in the B coding.

E. SCALE AND ORIENTATION INVARIANT HOUGH TRANSFORM
Given the scale and orientation representation developed
in the last section, we could use the 'correspondence chart'
algorithm to find possible matches. However, the particular
nature of this representation allows us to use the simpler
technique of Hough Transform with the additional simplicity
that it is scale and rotation invariant. We shall call this
the B - ¢ correlation technique. The coding and matching

algorithms (using the ACR specification) are given below.

Algorithm 2: B-¢ Coding

a. Determine a reference line (usually taken to be the

x-axis for convenience).

For each boundary point (s;), locate the next bound-
aryApoint (sj) (in a specific direction of traversal)
such that the ACR specification is met.

Determine the angle (B) between the chord joining sy
to s; and the tangent to s;. The sign of this angle
is positive if the segment of the shape bounded by
this points is convex, and negative otherwise.
Determine the angle (¢p) between the chord and the
reference line, measured clockwise from the reference
line (see Figure 3.8).

Determine other independent relation(s) between s
and Sj- For instance, the angle (g) between the tan-
gent lines to these boundary points.

Code each boundary point in terms of the vector r,
where r = (p,a). Set up a R-Table relating B to
(p,a). The Table is indexed by B (Table 2).
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Algorithm 3: B-¢ Matching

a. Set up an accumulator A(i) of N elements, where N is
the number of the (discretized) possible orientations
of the reference line. (Thus N = 36, if each orient-
ation is 10 degrees wide). Initialize accumulator to
zeros.

b. For each boundary point on the test shape, obtain ﬁ,
and (§,d).

c. For each pair of ($,ﬁ) indexed by ﬁ in the R Table,
check if the independent relation matches. If it does,
then determine the possible orientations (§) of the
reference line from $ and ¢@. Increment the correspond-
ing element of the accumulator. If not, proceed on to

the next boundary point. In other words,

i if |a-a] < tolerance
then
0=%-9¢
A(Q) = A(Q) + 1
else

next boundary point

The peaks in the accumulator array then correspond to
possible matches of the two shapes. The locations of the
peak in the array indicates the most likely orientations of
the reference 1line, and thus correspond to the relative
orientations between the two shapes.

For ease of future reference, we shall call the specifi-
cation used to pair the two points (si,sj) as the primary
specification, and the additional specifications used to
relate these points as the secondary specification(s). Also
the pair of points (Si’sj) shall be called the coded pair.
We shall use B to represent the coded information based on
the primary specification, q to represent the further

constraints based on the secondary specification(s) and @
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Figure 3.8 B-¢ Coding

to represent the angle between the reference line and the
chord joining the points in the coded pair.

This technique differs from the basic Hough Transform in
two essential ways. Firstly, this uses a reference line
whose orientation is to be reconstructed, rather than a

reference center whose coordinates have to be determined.

Secondly, each boundary point is identified by B, which is

local (referenced to the local tangent) rather than the
gradient angle, which requires an external reference axis.
These two differences make this matching technique scale and
orientation invariant. Another distinction is the use of an
independent relation (aq). By only using those points that
are simultaneously related in both the B and a parameters,
we reduce a fair portion of accidental matches. Of course
we could use more independent relations to further restrict
the possible match points. The limitation will be the
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TABLE 2
R-TABLE FOR B - ¢ CODING

Angle between Chord Set of Vectors
and Tangent to r= (¢a
Boundary Point

B1 11- P12/ -+ M1
BZ 1'21, I"22, e f‘zp
Bm Fm1 'm2- --* 'mq

number of possible independent relatioﬁs available (which
must be scale and orientation invariant and relatively
insen: itive to noise). The tolerances set on these specifi-
cations will determine the sensitivity to geometric distor-
tion. The smaller the tolerance, the more sensitive it
becomes. The tolerance must obviously be tighter for the
primary specification than for the secondary specifications.

This scheme is applied to shapes R35-52, R34-31p and
R34-102. The results, using 2 different values of ACR are
shown in Figures 3.9, and 3.10. The accumulator values are
normalised by dividing the values by the number of points on
the test curve. (In all the examples in this report, the
test curve is that given by the dashed line). These values
can be easily interpreted as correlation coefficients. For
example, Figure 3.10 indicates that at zero relative orien-
tation of the 2 shapes, about 407 of the points in the test

shape can be correlated with points in the reference shape.
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B-¢ Correlation with ACR Specification
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By the nature of the coding this correlation is not
point to point correlation, but rather point-on-a-segment to
point-on-a-segment correlation; ie, the correlation is made
on the basis of the behavior of the boundary in the vicinity
of the point. Visually, we can see that the correlation
should be higher than this. The low correlation is a direct
consequence of the sensitivity of the ACR to geometric
distortion. Both figures, however, correctly indicate that
the best correlation between the shapes being tested occurs
at zero degree relative orientation.

To improve the correlation, we need to make the pB-¢

coding less sensitive to noise. This implies that we need
alternative primary specification and, perhaps, secondary
specifications too. The other possible specifications
mentioned earlier were tried and found to be unsuitable too.

In the next chapter, we shall describe a new primary
specification that is 1less sensitive to the effects of
noise. Using this, the resulting correlation between R35-52
and R34-102 increases to 80% (see Figure 4.5). To do this we
need to forgo the demand f{or scale and orientation invari-
ance. However, the matching algorithm can be easily modi-
fied to enable the algorithm to match shapes of arbitrary

scale and orientation with a slight increase in computation.
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IV. A NEW CORRELATION TECHNIQUE

A. INTRODUCTION

The alogrithm developed in the previous chapter is
sensitive to noise. This is due to one main reason. We
have removed the scale unknown by using the ACR measure; arc
length is, wunfortunately, very sensitive to geometric
distortion. In other words, we have replaced an unknown
factor with. an uncertain measure. Thus, unless, we can find
an alternative measure that is scale independent and reason-
ably immuned to noise, this approach may be of limited prac-
tical use. Such a measure was not found.

We therefore remove the scale invariant constraint.
What we eventually found is a new and interesting approach
to boundary coding. 1In its essence, each boundary point is
coded with respect to another point picked at random from
the boundary. Note that this coding is not scaled and orien-
tation invariant. In fact identical shapes would yield

different codes if different sets of random numbers are
used!

B. RANDOM CODING

We used as primary specification, the random separation
between the coded pairs. The property coded at each point
is again J, the angle between the tangent to this point and
the chord joining the coded pair. To retain the 'local'
features (essential for partial match applications), the
range of the allowable separation (called the coded range
henceforth) is restricted. For illustrative purposes, 3
sets of coding ranges are used in the examples below, namely
10 to 60 points, 80 to 130 points and 150 to 200 points
(i.e., the second element in the coded pair is picked from

any point that lies between 10 to 60 points away from the
first element, etc).
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Two secondary specifications are used: the ACR and the N
J angle made by the tangents to each point in the coded pair .
(ie. @ in the previous algorithm). 1In the matching process, .
since the points are paired randomly, it becomes necessary §,

to check each point against all other points in the test

shape. In practice, since the coding range is itself
restricted, this process can be also restricted to a smaller G
section of the boundary. In the examples that follows, this t;
3 search range is limited to half the entire boundary length. i
f Further savings in computation is achieved by checking only \i
alternate points within this range. p
The basic algorithm for this technique is similar to the E
previous one. For clarity, we shall restate it. Note that § -
and ¢ below refer to the same angles as in the previous ':
algorithms, while g is used differently here.” s
Algorithm 4: Improved f-¢ Correlation E
>
a. For each boundary point in the reference shape, :i
. select another boundary point at random from those .
A within the allowable range. Determine the (B8,¢,a) ;
. relation between the coded pairs thus found. (Note: :
| a contains two components, the ACR and the tangent :
, angle measures). See Figure 4.1. .
. b. Construct the R-Table in the same manner as before. f
c. Initialize the accumulator array as before. S

d. To match a test shape, determine for each boundary
point, the (ﬁ,$,ﬁ) relation with all other boundary
points within the search range. For each (ﬁ,&,ﬁ) and

corresponding (B,p,a) from the R-Table, reconstructs
the reference line as before.
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v

av e e B 1 ¥
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e. Peaks in the accumulator array correspond to possible

matches of the two shapes with the location of the K
. peaks corresponding to the relative orientation of 3
- )
3 the two shapes. ~
‘ .
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ﬁ Figure 4.1 B-¢ Coding Using Random Separation .
+ .
> We shall discuss the key features of this technique and 2
i provide heuristic explanations, where possible, on the
2 'hows' and 'whys' of it. These features are verified in the F
} numerous examples that follows. .
- &
2 C. FEATURES =

1. Scale and Orientation Invariance

e e &
D

The coding is not scale and orientation invariant.
g The scale unknown is resolved in the matching algorithm by
' pairing each point with all other points within the search
range. This, in essence, performs a matching over a range of
scale. The orientation unknown is not a problem, since the

]
LA N

! output of the matching process will indicate the relative i
orientation of the two shapes. The correlation is - i
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performed, in essence, over the range of possible relative

e
orientations. In this respect, this correlation technique is '3
not affected by unknown scale and orientation and can be &
said to be invariant to these. -f
2. Robustness j
The random separation helps to 'break' down the |
effects of noise. Consider the alternative of using a fixed 5
separation, say n. Then if the coded pair (s;,s;,,) is 3
affected by noise, the next pair (s;,1,Sj+1+n) 15 likely to %
be similarly affected. However, if the separation 1is
random, and if (si,sj) is affected by noise, it is not 5;
necessary that (Si+1'sk) (where j and k are randomly picked) v
would also be affected. More importantly, even if it is, -
the effects in the two coded pairs are unlikely to be the t_
same, ie. the false matches they cause are not likely to be oy
correlated. '%
For the case of fixed separation, because of the tf
strong correlation (close proximity) between the coded N
pairs, noise in their coding are likely to be correlated, o
giving rise to false 'peaks' during the process. This §§
implies that in order to achieve the best decorrelation of g:
false matches, the boundary should be coded such that the b
parameter, [, is uniformly distributed across its range, .
-180 to +180 degrees. This may require extending the coding E:
range to a substantial fraction of the entire boundary &;
length, which may not be always desirable since the coding f;
then becomes less 'local' in nature. o~
Another factor that helps to reduce the effects of ;;
noise is the nature of the matching algorithm. Figure 4.2 &
illustrates this. The solid line there refers to portion of "l
the reference shape and the dashed line to the test shape. e
Point s; is paired with S5 during the original coding. 1In Eﬁ
the matching algorithm, since s; is paired with all other "
points, it would be eventually paired with one that is close o
3
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: geometrically to the original S (ie. sj in Figure 4.2) and
b that also satisfy the secondary specifications. Thus, we

would expect to recover the orientation of the reference

‘: line.

-
L
N

~
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- Figure 4.2 Matching in the Presence of Noise

é 3. "Local" Characteristics

' The choice of the coding range determines the amount
{ of 'local' information captured in the coding. The lower
. the upper limit of the coding range, the more 'local' the
. representation becomes. If the coding range is the entire
. boundary, then the coding takes on a global nature. This
g will be clearly illustrated in the examples on Partial
> Matching below.

g . . .

- 4. Discrimination

q

& The distance of the coding range from the point
- being coded also determines the level of discrimination in
- the matching process. The closer this distance is, the
o

y smaller the segment the matching algorithm would be trying
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to find matches. What is important here is the fact that
small segments tend to 1look more similar than larger
segments. Thus, a small segment from any curve would tend
to look like a linear segment. Discrimination of two shapes
cannot be reliably done at too small a scale. This also
implies that the lower limit of the coding range should be
as large as the longest linear segment of the shape, if the
matching process is not to be overwhelmed by matches of
short linear segments.

The algorithm uses the secondary specifications to
rejects obvious false matches The types of discrimination
possible with our choice of specifications is illustrated in
Figure 4.3. If scale information is also available, then it

can be effectively incorporated as an additional specifica-

tion. An important observation is that the tolerances set on
these specifications determine the 'noise rejection thresh-
old'. The 1larger the tolerance, the better the matching
(detection probability) under noise; the higher too would be
the amount of false matches (false alarms). The tolerances
used in most of the examples below are 0.1 for the ACR
measure and 5 degrees for the tangent angle measure.

The reader may wonder why do we use the ACR specifi-
cation when it has been stated that this specification is
too sensitive to geometric distortions. There is a distinc-
tion between the role ACR play in the previous algorithm
compared to the present. Previously it was wused as a
primary specification, whereas here it is used only as a
confirmatory specification; the tolerance on it is therefore
looser here, making it less sensitive to noise.

5. "End Losses"

The 'look forward' characteristics in the coding
process means that the output matched segments tend to be
shorter than the actual match in the input segments. This

is because the section 'forward' of the points being matched
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Figure 4.3 Discrimination Using Secondary Specifications

must itself matches before the 'current' segment can match.
This will be clearly illustrated in the examples on Partial
Matching too. The loss of the 'forward ends' can be easily

removed if the coding and matching are performed in both
directions.
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6. Lack of Internal Consistency Checks

When matched segments of the shapes are found, the
present algorithm simply counts the number of points in
these segments and expresses this as a fraction of the
number of points in the test boundary. It does not check to
see if the relative positions of these segments in the test
and reference shapes are consistent. This additional check
should eliminate false matches too. This is the main weak-
ness of this technique. Such a check could be implemented
(similar to those used in hierarchial search). It has not

been done to keep this basic algorithm simple.

D. RESULTS

The algorithm is applied to numerous test shapes below.
These examples verify the various comments made above. It
is hoped that the large number of test cases would give ‘the
reader confidence in the use of this new technique. In the
examples, the number of points in the shapes are varied to
ensure that any scale information that may be implicitly
present are removed. As a reminder, the second number in the
shape title indicates the number of points in that shape.
Thus R35-52 has 500 points. Appendix A contains more details
of these shapes.

In the discussion and figures that follow, N refers to
the number of sample points in the test shape, and RTOL and
GTOL refer to the tolerances set in the ACR and tangent
angle specifications respectively. One final note before we
see the results. The direction of the orientation angle is
as follows. A positive relative orientation of, say 90
degrees means that the test shape (dash line) is rotated 90
degrees counterclockwise from the reference shape.

1. Geometric Distortion

To study the sensitivity of this technique to noise,
we introduce distortion at varying levels into the test
shapes. Figures 4.4 to 4.7 show the results for one set of

51

N o e e e e .
et o Tt e e T
Lo et -Jf*{,n.',.a‘\ ERR S S S e

“r

v~

o dagn g




ey

a
gy v, v,

—— R35-52 ---- R35-52 R

.0

1

COBING RANGE: SEARCH RANGE: N/2

et
. . R

150-200 PTS RIOL + 0.100
-------- 80-130 PTS 6TOL + 5 DES
10- 60 PTS

0.8
!

g

0.6
."¥' '/-

|

Ty e

0.4
1
RN

Rl

CORRELATION COEFFICIENT
0.2

s 8 5 80

0.0

U

180 -135  -90  -45 0 45 %0 135 180 -
RELATIVE ORIENTATION (ANGLE OF REFERENCE LINE) ..

A v Ny,

Figure 4.4 Correlation Between R35-52 and R35-52 s

st H

: 52 4

T S S Tt St S et it SR P St Tt g ‘_-": i IR SR I NG L T LRI TP SPe T R IR I ‘.“'."‘."‘ '~;."I
TN T oy Sty S TRy vy iy W PRV TS TSV VRV TRIA WSS SL IR VR VA VO VIVV OV VR VEVIVE A




AT LT LTty W Wy W
v

CORRELATION COEFFICIENT

— R35-52 ---- R34-102

.

CODING RANGE: SEARCH RANGE: N/2

150-200 PTS RTOL ¢ 0.100
3 EEEEEE R 80-130 PTS GTOL  : 5 DEG
< - 10- 60 PTS
V=]
D'_.
C;-‘
(o]
O._‘
<
e ] i 1 t i Ll i
-180 -135  -90 -15 0 15 30 135 180

RELATIVE ORIENTATION (ANGLE OF REFERENCE LINE)

Figure 4.5 Correlation Between R35-52 and R34-102

Al

ataan)




g e e i I Ak 0 el h e AL e A s S o i Aea

W RS
AL

e

—— R35-52 ---- R34-152
o - -
CODING RANBE: SEARCH RANGE: N/2
150-200 PTS RTOL : 0.100
W —mmmm - 80-130 PTS GTOL : 5 DEG

© | ———— - 10- 60 PTS /\

CORRELATION COEFFICIENT

-180 -1135 -go -;5 0 115 9‘0 135 180
RELATIVE ORIENTATION (ANGLE OF REFERENCE LINE)

Figure 4.6 Correlation Between R35-52 and R34-152

54




e iad Ab WO "D a0 mid gte wis ot
WRARASRI ORI Y | [P 2 ot et e 2 Sad * 2y 9" . P et v - i tel "
’ T

b
M
. -
¢
\
‘ i
! .
e
¥
v
v
'
; B
: ] —— R35-52 ---- R34-252 )
- 2 3
B CODING RANGE: SERARCH RANGE: N/2 =
— 150-200 P1S RTOL : 0.100
Z R ) - 80-130 PIS GTOL : 5 OE6
W Y ———— - 10- 60 PTS
[
w
|
[#8]
(wo]
(o]
" =z
4 =
. b
. fe =
. P |
(7S]
[o 4
N o=
. o
X o
3
i 1 1 i 1l L
-180 -13S ~30 -4S 0 45 S0 135 160
RELATIVE ORIENTATION (ANGLE OF REFERENCE LINE)
" Figure 4.7 Correlation Between R35-52 and R34-252
: 55
"
o

- e ) S P TS S L) .."-'-'.-
IR el Ay B .n

!-._‘._-...._\;.\_ﬁk'- ._-_A\.--“\..-;\‘nu,_\."‘- hY -n\-;-;q._‘ )_:..l 's e N -\\\1\ lAlllh\AsA .\---.-‘ W A-A\-- \A. PR




shapes. When the two shapes are identical, correlation is
100% as expected (Figure 4.4). As the amount of distortion
increases, the 1level of correlation decreases, until it
reaches 607 for Figure 4.7. However the correlation level
away from the peak value remains relatively constant, illus-
trating the fact that matches at these orientations are
random in nature. Note also that the lower coding range (10
to 60 points) produces more apparent matches, since smaller
segments tends to match better than larger segments. The

correlation peak occurs at the correct relative orientation,

2 e RN 8.0,V s s A e Y BT P T ARERTe S 0T

ie. zero degree, since the two shapes are identically
oriented. The result for Figure 4.5 should be compared
against Figure 3.10 which uses ACR as the primary specifica-
tion. This produces only 40% correlation between the two
shapes. Using random coding, the correlation has increased
to 80%. '

The next figure, Figure 4.8, is -almost identical to
Figure 4.4 despite the fact that the search range has been
increased from N/2 to N-1. The fact that searching through
a larger search range does not produce significantly more
correlation attests to the 'noise' rejection capability of
the algorithm. .

The algorithm is next applied to a set of more 'dif-
ficult' test shapes. Figures 4.9 to 4.12 show the correla-
tion when the test shape is scaled down, rotated and

distorted. 1In spite of the scale and orientation differ-
ences, the algorithm correctly locates the match at 90
degrees relative orientation. More significantly, the

amount of correlation is not unreasonable compared to what
one might estimate visually. For Figure 4.12, the distortion
has more or less made the test shape symmetrical. It is thus

not surprising for the algorithm to locate two peaks at plus
and minus 90 degrees.
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fhe amount of correlation is affected by the noise
threshold set by the secondary specifications. If the toler-
ances on these specifications (ie. GTOL and RTOL) are
increased, the peak correlation can be seen to increase from
about 307 to 50% (Figure 4.13). Inevitably, the amount of
false matches increases too.

Figures 4.14 to 4.20 provide further examples for
different sets of shapes. The reference shape becomes
progressively 'smoother'. The general level of correlation
is higher for these figures than for the previous set. This
is due to the general symmetry and gross similarity between
these shapes. Figure 4.20 provides the extreme case where
the test shape is almost circular. Because of the symmetry,
the correlation at all orientation is nearly constant.
Also, since there is marked similarity between the test and
reference shapes, this level of correlation is also very
high. The reader may wonder about the ability of the algo-
rithm to distinguish between very smooth shapes such as
ellipses. This is further discussed under the section on
Discrimination below.

2. Partial Matching

Figure 4.21 shows the ability of the algorithm to

detect partial matches. Except for the lowest coding range,

the results show a distinct correlation peak at zero rela-
tive orientation. The multiple peaks in the lowest coding
range is due to the general similarity of shorter segments
compared to longer segments. Figure 4.22 is a plot of the
correlated points (for the 150 to 200 coding range). It
shows clearly the segment of partial match. Also, it shows
that the correlated points at the other orientations are
scattered across the boundary. 1In obtaining the value of

correlation, the algorithm simply sums up the number of
correlated points at each orientation.
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Figure 4.23 indicates the location of the matched
segments for two coding ranges. The ability of the algo-
rithm to correctly locate the matched segments is clearly
illustrated. The two diagrams also show clearly the effects
of 'end losses'. At the 150 to 200 coding range, the 'look
forward' section is much longer than for the 10 to 60 range.
Consequently, the higher the loss of matched points at the
forward end. As mentioned before, this loss could be minim-
ised by modifying the coding and matching algorithm to look
in both directions.

Figures 4.24 to 4.26 show the effect of noise on
partial matching. As.before, the peak correlation decreases
with noise while the off-peak 1level remains relatively
constant. Note that the coding range 150 to 200 produces
almost zero correlation. This is not surprising since the
reference shape boundary has only 200 data points. At this
coding range, almost the entire boundary is being coded at
each point! This illustrates clearly the relationship
between the coding'range‘and the 'local' characteristics in
the coding. For partial match applications, it is essential
that the coding range be restricted to a short section of
the boundary. Figure 4.27 sﬁows the location of the partial
match for the relative orientation -75 degrees.

Figures 4.28 shows the matching of a small section
of a 'wing' to the reference shape R32-31lr. A good match
is found at about -75 degrees. Figure 4.29 shows the reverse
situation, where the reference shape is matched against the
given wing. Possible matches are located at about 95 degrees
and -105 degrees. The matched segment is indicated in
Figure 4.30 (for orientation 95 degrees). These segments
agree with our visual observation.

Figures 4.31 to 4.32 provide more examples of
partial matches. Note that in all these, the location of the
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Figure 4.23 Matched Segment Between R35-52 and R34-31p

at Zero Degree Relative Orientation
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peak correlation is correctly obtained. However, because of
the general symmetry in the shapes, the general level of the
correlation (away from the peak) is also significant. 1If
the 'scatter' of correlated points is taken into account,
these false matches could possibly be reduced. The simplest
way to do this would be to give different weightings to the
correlated points depending on whether these are isolated
points or are part of a continuous segment.

3. Discrimination Capability

In this final section, we examine the discrimination
capability of the algorithm. TFigures 4.33 to 4.35 show the
low correlation found when matching R35-52 against the other
shapes. The next set of examples (Figures 4.36 to 4.39)
show the discrimination between 'smoother' class of shapes.
There is no prominent peaks in the correlation. However the
general level of correlation is significantly higher because
of the nature of the shape (smooth with plenty of 1linear
segments). Consider Figure 4.39 for example. The large
number of linear segments in both shapes gives rise to the
high value of correlation between them.

Figure 4.40 shows the location where partial match
is found (at -175 degrees). This figure illustrates the
main weakness of this algorithm; it does not check whether
the relative positions of the matched segments in both the
test and reference shapes are consistently related. In this
particular example, different segments in the test shape
have obviously been matched to the same segment in the
reference shape. To overcome this, one possible solution
would be to use some sort of hierarchical matching scheme
whereby the matched segments are first arranged according to
their lengths and then checked for consistencies; beginning
with the longest matched segment, and so on.

The question of the ability to distinguish between
highly symmetrical shapes such as ellipses has been raised
earlier. Figures 4.41 and 4.42 show how the algorithm
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Yo

matches ellipses of different major to minor axis ratio (b/a
ratio). The b/a ratio for these ellipses are 1.5 for E3-152,
2.0 for E3-22 and 0.3 for E2-031. The results shows that
ellipse of b/a ratio 1.5 is better correlated with that of
ratio 2.0 than with that of ratio 0.3 (or equivalently 3.33
a/b ratio). This agrees with visual observation.

E. CONCLUSIONS

We have demonstrated the capability of this new tech-
nique and the effects of varying the various parameters on
its performance. The main weakness of this technique has
also been highlighted. Although the examples used have been
shapes with closed boundaries, there is nothing in the
algorithm that is specific to this type of shapes. The
algorithm is therefore equally applicable to shapes with
open boundaries.

The -algorithm is implemented on the IBM 3033 computer.
Computation time depends on the shapes béing matched. Shapes
without distinct features (or, equivalently, with lots of

similar segments), such as R25-52, require the most computa-

tion. On the average, the computation of one correlation
curve between two 500-points shapes takes less than 10 CPU
seconds. This is with a search range of N/2. 1If this is
reduced to N/3, this figure drops to about 6 seconds. In

our examples we have used a search range of N/2. This is
probably larger than necessary since this implies that the
coding range is as large as this. One is not likely to use
this large a coding range since the 'local' features in the
shape being coded would then not be captured. (The choice
of N/2 for the examples is primarily to test the ability of

the algorithm to reject spurious matches from the additional
checks).
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! V. SUMMARY B
. We begun with a search for a representation scheme that A
' would be scale and orientation invariant. Such a scheme was B

found. However, to achieve the scale invariance, the scheme oy

required the local behaviour of the boundary to be rela-
tively noise free.

A more general technique was subsequently developed.

R 2% o0 Py R )
s AR

X The essence of this technique was the use of random boundary
points in the coding, which helps to decorrelate false
matches. The matching algorithm used the basic concept in
Hough Transform matching but modified to remove its depen-

N

dence on scale and orientation information.

This new correlation technique was applied to a large

s

X number of shapes. Results verified its ability to recognise i
: shapes (complete or partial) of arbitrary scale and orienta- : ff
tion and its robustness against noise. 1Its discrimination ﬁ

capability among different shapes was also demonstrated. -

The main weakness in the present algorithm 1lay in its ?

simplistic way of summing up the correlated points without t

regards as to how these are distributed or interrelated. n

The biggest improvement to this algorithm would come =

from incorporating an efficient check for consistency in the f

) relative positions of the matched segments. The coding and i
X matching process could also be modified to look in both B
'directions', so as to reduce the 'end losses'. Further f:

. study could also be made on the choice of the various param- B
; eters used, namely the coding range, search range and Ei
- tolerances on the secondary specifications. Since the ;
reference shape would be a known entity, it would be i

). possible, and indeed advantageous, to use different sets of ;
'5 parameters values for different classes of shapes, each ;
optimised to the particular shape. In this report, we have A
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discussed one set of primary and secondary specifications.
These may not be the most effective set available. Other
possible specifications could also be examined.

Finally we note that the main contribution of this study
is the suggestion of an alternative means to boundary
coding, using which, an effective and efficient correlation
technique could be used to match two-dimensional shapes.
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APPENDIX
GENERATION OF TEST SHAPES

)t

, The shapes used for verifying the algorithm (except for ) ;
ellipses) are generated using a Fourier series type method. —

- Specifically the x,y coordinates are determined by: {
" h
: x(0) = A(B)*cos(f+g) N
y(8) = A(8)*sin(0+p) %

with ‘f

A(8) = exp[r()] R

r(0) = 3 ajxsin[f;*p * Yi] .

¢ = angle through which

- shape is rotated Z,

- Rt

; The a,y and f can be varied to produce different shape E§
) patterns. This method ensures that the figure generated is ) i
closed. The data points would, however, not be equally "

spaced along the arc length. (In practice, the boundary g

data would be uniformly sampled). The data points are next E
approximated using a B-splines routine with variable knots -

Y [Ref. 18], and resampled at approximately equal arc length "3
) spacing. 5
There are two reasons for using B-splines. Firstly, the o

approximation routine available allows one to vary the <

closeness of fit, which enables us to introduce distortion NG

gradually into the test shapes. Also, there has been an :{

earlier proposal to study how the knots positions and the

B-splines coefficients could be used for shape recognition ad

purposes. (These was not carried out because of difficulties o9

in the knots placement criteria; no satisfactory theoretical o

study on this has been done). E
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Each shape is coded with a mnemonic. Exéept for the
ellipses, each mnemonic is prefixed with a R and has the
general expression:

Rnn-nnna

where 'n' refers to a numeric and 'a' refers to an alphabet.
The first numeric identifies the set of shapes (1,2,3 or 4).
The second numeric indicates the number of samples (in terms
of hundreds). The last numeric refers to the relative scale
(1 or 2). The remaining, which may be one or two digits
numeric, indicate the closeness of fit used in the spline
routine. The last alphabet is optional, and indicates addi-
tional information about the shapes (p for partial, r for
rotated and n for noise added). For examples,

R35-252
represents: 3 ---- shape set #3
5 ~--- 500 sample points-
25 ~---- closeness of fit factor is 25
2 ~--- relative scale of 2
and
R13-011n
represents:
1l ---- shape set #1
J ---- 300 sample points
Ol ---- closeness of fit factor is 0.1
1l ---- relative scale of 1
n ---- noise added to portion

of the boundary

The ellipses are generated from their parametric equa-
tions. These are prefixed by the letter E. The first
numeric refers to the number of sample points. The 1last
numeric indicates the relative scale and the remaining
numeric refers to the major to minor axis ratio.
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